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SUMMARY

We extend the ideas of evolutionary dynamics and stability to a very broad class of biological and other
dynamical systems. We simultaneously develop the general mathematical theory and a discussion of
some illustrative examples. After developing an appropriate formulation for the dynamics, we define the
notion of an evolutionary stable attractor (Esa) and give some samples of Esas with simple and complex
dynamics. We discuss the relationship between our theory and that for Esss in classical linear
evolutionary game theory by considering some dynamical extensions. We then introduce and develop
our main mathematical tool, the invasion exponent. This allows analytical and numerical analysis of
relatively complex situations, such as the coevolution of multiple species with chaotic population
dynamics. Using this, we introduce the notion of differential selective pressure which for generic systems
is nonlinear and characterizes internal Esas. We use this to analytically determine the Esas in our
previous examples. Then we introduce the phenotype dynamics which describe how a population with a
distribution of phenotypes changes in time with or without mutations. We discuss the relation between
the asymptotic states of this and the Esas. Finally, we use our mathematical formulation to analyse a
non-reproductive form of evolution in which various learning rules compete and evolve. We give a very
tentative economic application which has interesting Esas and phenotype dynamics.
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262 D. A. Rand and others  Dynamics and evolution

1. INTRODUCTION

We present a dynamical theory of Darwinian evolu-
tion in ecosystems. In doing this we address the
problems associated with coevolution and dynamics.
Our theory deals with complex dynamics such as the
oscillations and chaos found in many model eco-
systems. It is coevolutionary in the sense that the
evolutionary environment of a given species is the
interacting ecology of coexisting species. The evolu-
tion of this species must be seen in the context of the
coevolution of the complete local ecological structure.

We start by extending the ideas of evolutionary
dynamics and stability to a very broad class of
biological and other dynamical systems. Firstly, we
show how to formulate biological dynamics so that the
notion of evolutionary stability of general attractors
can be defined. Such evolutionarily stable attractors
(Esas) are stable to small invasions by populations
with mutant phenotypes or behaviour. They genera-
lize Maynard Smith’s evolutionarily stable strategies.
A phenotype p for which there is an Esa is called an
EsA value. The dynamics of both pure and mutated
systems are determined by the pure equations and
interaction functions of the given system. If the
dynamics are the mixed strategy population dynamics
of linear evolutionary game theory, then we recover
the condition for an Ess due to Maynard Smith and
Price (Hines 1987; Maynard Smith & Price 1973;
Maynard Smith 1982; Zeeman 1979, 1981). However,
our approach both allows a unified treatment of the
various cases within this classical theory (such as
playing the field and asymmetric competition) and
also deals with a much wider range of nonlinear and
dynamical situations. We illustrate this first by consi-
dering constrained coevolution of a resource-preda-
tor-prey system and also a modification of the classi-
cal Hawk-Dove game (Maynard Smith 1982). In the
latter example, the individuals are predators and the
resource being competed for is a share of the prey
population that is changing dynamically. The first of
these two systems has a chaotic Esa for some para-
meter values. For others, it has multiple rsAs separa-
ted by evolutionary repellors. In such a case the path
of evolution is not uniquely determined?.

The Hawk-Dove predator-prey example has two
dynamical Esas. One of them corresponds to that
found in the classical theory (after taking time-
averaged values for the resource). The other is a
boundary Esa where only Hawk-like behaviour is
observed. Its existence is a consequence of the inclu-
sion of the dynamical prey. Moreover, these Esas can
be quasiperiodic.

In §4 we then introduce the the invasion exponent
35(p") =9,(A, p") which characterises the evolutionary
stability of an attractor A, corresponding to a pheno-
type p, to small mutant populations with phenotype
#’. It measures the rate of growth of the invading
population. This is our main mathematical tool for the

t In a fature paper (Rand & Wilson 1993) we discuss the
relationship between the bifurcations of such multiple Esas and
punctuated equilibria.
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analysis of Esas. Using it we are able to check the
evolutionary stability or instability of quite compli-
cated systems with interesting dynamics. The correct
mathematical definition of & is non-trivial and impor-
tant to get right, and is given in §4. We also derive
analytic expressions for 8 in a number of interesting
situations. For example, it is easily calculated for
stationary, periodic and quasiperiodic attractors. For
Lotka-Volterra systems it is determined at the fixed
points of the system even if the attractor is chaotic. We
give a numerical algorithm for calculating 3 when this
cannot be done analytically. Section 4 is the most
mathematically sophisticated part of the paper
because, for chaotic attractors, it requires the use of
ideas from ergodic theory and many of the results
have to be couched in terms of invariant measures.

We also use the invasion exponent to define a new
function s(p) = (s;(p), . . ., 5(p)) which we call the
differential selective pressure. It measures certain gradients
of the invasion exponent as the phenotype is varied
through p. If p is interior to the phenotype constraint
manifold P, then a sufficient condition for p to be an
Esa value is that s(p) =0 and that various partial
derivatives d, 5;( p) are negative (or negative definite in
the case of multi-dimensional ). This is the generic
situation for nonlinear systems and brings to light a
degeneracy of the linear games. For these, if p is an Ess
value, then the derivative of s is identically zero. This
is why the usual Ess condition of Maynard Smith and
Price (given in equation (2.4) of Maynard Smith
(1982)) contains a condition which is second-order.
Generic nonlinear systems only need first-order condi-
tions. For these, if p = p, is an Esa value, the function
9,(¢") is nonlinear. It has a quadratic maximum at p
and takes value 0 there.

In § 5 we introduce phenotype dynamics. These are
also completely determined by the pure equations and
interaction functions of the system together with a
mutation process. They describe the dynamics of
phenotypic distributions. A distribution of phenotypes
is present in the population and we study the way in
which it changes through time. We show that in some
cases the phenotype dynamics agree with the Esas and
the system converges to a distribution which is close to
a delta function based at the Esa phenotype. (Of
course, the amplitude varies dynamically.) However,
in others, the asymptotic distribution is more complex.
For example, in some cases, it has much greater
phenotypic variation and, in others, the competition
between multiple Esas leads to very interesting pheno-
type dynamics. The simple case is observed in our
resource-predator-prey model. The only complica-
tion is that when there are two Esas, then for widely
spread initial conditions, one of these dominates the
other.

The Hawk-Dove predator-prey system is different.
As mentioned above for mixed strategies, there were
two EsAs: an interior one corresponding to that
observed in the classical game and a boundary Esa
where only Hawk-like behaviour is observed. If all
the initial strategies are close to this boundary
situation, then the asymptotic distribution is close
to a delta function at the boundary. On the other
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hand, all other initial distributions converge to a
non-trivial widely spread distribution. This is sup-
ported on the whole phenotype space and has its mean
at the interior Esa. Thus, although it has the expected
mean, the asymptotic state has great phenotypic
variation. In § 5d(i) we show that this is a conse-
quence of the above-mentioned degeneracy of the
linear games.

If instead of mixed strategies we consider polymor-
phic populations, where each individual is forced to
play a pure strategy, then our phenotype dynamics
are analogous to those introduced by Taylor & Jonker
(1987). However, the behaviour is much richer. We
observe complicated oscillatory irregular behaviour
rather than the usual equilibrium. This example
demonstrates that mixed strategy dynamics can differ
greatly from polymorphic population dynamics even
within the same system.

We also consider a predator—prey system in which
the prey adopts a strategy p which weights the relative
importance given to searching for food or avoiding
predation. This has multiple Esas and this multiplicity
is reflected in the phenotype dynamics. Initial distri-
butions converge to a state where they oscillate in an
irregular way between two opposing distributions.
One consists mainly of risk-averters while the other
mainly consists of risk-takers. It is tempting to think of
this as a biological business cycle.

Finally, in the last section we consider a possible
non-reproductive application of these general ideas.
The general situation we have in mind is a system in
which agents adopt strategies in the face of both a
dynamical environment and their appreciation of the
actions of other agents. The dynamic which deter-
mines the changes in the agents strategies corresponds
to some sort of learning. We are interested in both the
dynamics of such a situation and the evolution of the
learning process. It is this learning process which is
regarded as the phenotype p. In this context we
are only able to present a very modest example.
We model learning using discounted payoffs and
use an economical version of our Hawk-Dove preda-
tor—prey system. In this we think of the prey as
consumers and the predators as producers that adopt
either costly high-risk aggressive methods of selling
or low-risk passive ones. We then investigate the
evolution of the residual preferences of the learning
process. _

We introduce the various mathematical ideas by
the series of examples described above. These are not
necessarily meant to be biologically realistic, but
rather to indicate the richness of our approach and to
convince the reader that it can usefully be applied to
realistic situations. In particular, in each of the cases
we consider, the dynamics will be given by a mapping.
Thus, time is discrete. The biological justification for
this usually involves the non-overlapping nature of
generations. In our case it is simply mathematical and
expository convenience. All the ideas we discuss
extend without difficulty to continuous time and
ordinary differential equations. In addition, we
believe that they apply to a much wider class of
systems including stochastic processes and spatially

Phil. Trans. R. Soc. Lond. B (1994)
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extended systems such as partial differential equa-
tions, coupled map lattices and cellular automata. We
indicate the changes that are necessary for ordinary
differential equations in Appendix 1.

At this point we would like to say a few words about
our interpretation of coevolution which in some
aspects looks ahead to some of our results. The
simplest form of evolution occurs when only the
phenotype p; of a single species j changes. Nevertheless,
the evolutionary stability of that change is determined
by the whole local ecological dynamics. Coevolution is
where the ecology’s phenotype vector p changes with
respect to more than one species. Let p1, . . . p/ be the
new species phenotypes. For this coevolution, we
require that at least two of the phenotypes p/ have
changed. Let y = (v, . ¥,) be an invading
population of several species with these new pheno-
types p’. Then the pure system with phenotype p is
unstable to invasion by y if, and only if] it is unstable
to invasion by at least one of the single-species
populations given by y,. Thus, a complex population
can invade if, and only if, one of the simple ones that
make it up can. This fact is the content of proposition
4 of § 4b.

In related work Cressman (1990) has considered
evolutionary stability in ecological systems at an
equilibrium point and Marrow et al. (1992) have
carried out an extensive analysis of selective pressures
in a Lotka—Volterra predator—prey system. The latter
work considered the relation between Esss and Red
Queen evolution. This question was also addressed by
Rosenweig et al. (1987). In this paper the problem of
evolutionary stability and instability for equilibrium
ecologies is also formulated and a dynamic on pheno-
type space defined by selective pressure is introduced.
An alternative approach to evolutionary stability in
density-dependent systems is contained in Brown &
Vincent (1987). However, this follows a different and
more limited approach than ours and depends upon
the existence of a so-called fitness generating func-
tion. In a short survey article Metz ¢t al. (1992)
address some related topics. In particular, parallel-
ing our invasion exponent, they consider the use of
Lyapunov exponents to characterize fitness and study
invasions.

Parts of the paper are very mathematical and use
concepts that, although they are necessary to our
development, are not in common use outside of
mathematics. This is particularly true of §4. We
therefore recommend that, on a first reading, the
biological reader should omit all of this section but its
introduction.

2. PRELIMINARY MATHEMATICAL
FRAMEWORK

(a) Mathematical framework and an example

We start by considering a simple example with the
aim of illuminating the general mathematical discus-
sion that follows.
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Table 1. An explanation of the construction of equation (1)

term in
equation interpretation
146y prey’s unconstrained birth rate

x1 decrease in fitness of prey due to resource
—— .

X3 limitation

X . .

— decrease in fitness of prey due to predation

1 + dixy
1—dp predator’s unconstrained death rate
CoX1 predator’s fitness increase due to feeding
1+ b3 resource’s unconstrained reproductive rate
~f resource’s carrying capacity limitation
— C3X1 resource’s fitness decrease due to feeding

by prey

The example is a resource—predator—prey system
with the following dynamics

4o a2 2

P (I + by)exp % 01 1+ dim, )’

x/

2 (1 — dp)exp(caxy),

X2

x4 X

x—z=(1+bs)eXP<—f —Csxl)- (1

Here x1, x, and x3 denote respectively the population
size of prey, predators and resource and the primed
variables represent the corresponding numbers in
the next period. The biological interpretation of the
various terms in the equation is outlined in table 1.
We do not attempt to defend this model on grounds of
realism. It is just used here as an illustrative example.
As the parameters are changed, it displays a wide
range of dynamical behaviour including periodic,
quasi-periodic and chaotic attractors. For example, it
is chaotic when the parameters are as in table 2. The
attractor for the first set of these parameter values is
shown in figure 1.

In this example we distinguish three groups of
species: resource, predator and prey. In the pure
system there is one species in each group. However,
we want to consider the effect of adding mutant
resources, predators and prey. Therefore, we will
allow for mutations within each group and thus
consider systems with more than one species in each
group.

We can write equation (1) in the abstract form

f=1,...,59), (2)

showing the dependence of the dynamics upon the
phenotype parameter. In our example s = 3.

X = Xi(x,p)

prey population number

- ; 3 .
0 400 800 1200
resource population number

Figure 1. A two-dimensional projection of the attractor for
equation (1) with the first set of parameters as in table 2.

(1) Phenotypes

At this point it is important to discuss the relation
between phenotype and dynamics. We regard the
phenotype of a species group 7 as being described by a
vector p; of real numbers. Thus each aspect of the
phenotype is capable of continuous variation. We let
P; denote the set of possible values that p; can take. By
p we denote the vector (g, . . ., p,) which encodes all
the phenotypes of our pure system. One can think of p
as representing the ecosystem’s phenotype. The set of
values which p can take is denoted by P.

The dynamics and evolution of a system such as
that described by equation (1) is determined by the
parameters that occur in the equations. Each of these
parameters is a function of some subset of the p,. In the
resource—predator-prey model, equation (1) involves
the parameters o = a(p;), b; = b,(p;), d: = d(p;) and
k = k(ps), as well as the parameters ¢;, ¢, and ¢ which
depend upon the phenotype of more than one species
group. Because the parameters are functions of the
phenotypes they are not independent and there may
be constraints on the values that they can take.

If the phenotypes p; are allowed to vary indepen-
dently, then P is the Cartesian product of the sets P,
However, within our framework, it is often legitimate
and useful to replace the phenotypes by a subset of the
parameters that occur in our dynamical equations.
Hence we ignore aspects of the phenotypes that do not
affect the parameters and so we can regard the
parameters as the phenotype itself. This is permissible
because the phenotypes only express themselves
through these parameters.

These parameters are often constrained. For exam-
ple, it may not be possible to increase one without
decreasing another. When we regard the parameters
as defining the phenotypes, then the phenotypic
constraint manifold P is the set of all possible values of

Table 2. Parameter values for equation (1). These give chaotic dynamics

o b1 b3 1 Co 3 dl dz k
0.3 1.1 1.8 0.0025 0.0015 0.005 0.01 0.05 1000
0.5 1.1 2.8 0.001 0.0005 0.005 0.01 0.05 1000

Phil. Trans. R. Soc. Lond. B (1994)
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the vector of parameters. Because of the constraints
the dimension of this is often less than the number of
parameters. In this case P is a proper subset of the
Cartesian product of the P,

These constraints on p are represented by the
structure of P and this is why we call P the phenotypic
constraint manifold.

Later in this section we discuss the advantages
gained by using the parameters as phenotype. The
main advantage is the removal of phenotypic redun-
dancy.

There are two sorts of constraints. The first con-
cerns constraints internal to P. For example, these
may occur because two parameters in the equation for
the ith species group a=a(n) and b =b(m) are
functions of a single component 7 of p;. Then locally &
will be a function of a. Also, there are often constraints
imposed by energy and resource limitations}. We will
see that the existence of these internal constraints is
very important for the existence of Esas§ and is also an
important natural property of real ecosystems.

The other constraints are cross-group constraints
where a parameter in the equation for the ith species
group depends upon some of the phenotypes p; with
J # ¢. This is the case, for example, for the parameter
¢ in equation (1) which depends upon the phenotype
of both the prey and the predator. However, it is
usually the case that these parameters are part of the
interaction terms that we are going to define below. It
then follows that their dependence upon the p; for
which j # 7 is not relevant to the question of evolution-
ary stability. This is explained in detail in remark 1 of
§ 4c. We continue the discussion of these cross-terms
after introducing the interactions.

Our approach allows for the simultaneous coevolu-
tion of all the species phenotypes, and all our general
ideas are developed in this context. However, in the
examples that we treat, we often constrain the pheno-
type and only consider mutations of a single pheno-
typic attribute or of several that are linked together
and determined by a single parameter.

(11) Interactions

Let us now return to our example and suppose that
a mutant prey species is present, consisting of
individuals. Then to the equation (1) we must add an
equation for y; similar to that for x; but with a
different value p; of the phenotypic parameter p;. The
original and mutant prey will compete for the same

I In some cases the constraints are of the form f; < C; where f; is a
function of the phenotypes present in the system. In such a case,
the interesting evolutionary stable phenotypes are usually on the
boundary 0C of the constraint set C. The boundary 0C is given by
Jf;=C. It may then be desirable to take P = dC. In particular,
this may reduce the dimension of the permitted phenotypic
variations without altering any conclusions.

wn

This is relevant to the debate on the Red Queen Hypothesis. We
would suggest that this hypothesis is essentially equivalent to the
non-existence of Esas. Therefore, in view of our results, its veracity
is largely equivalent to the absence of constraints that enhance the
possibility of an Esa. The debate should therefore concentrate
upon understanding the structure of these constraints in real
ccosystems. We discuss the question in more detail in Rand &
Wilson (1993) and Rand (1993). Also see Rosenweig et al. (1987)
and Marrow et al. (1992).

Phil. Trans. R. Soc. Lond. B (1994)
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available resource x;. The resource-limiting term in
equation (1) is exp( — ox;/x3) which expresses the
effect of the magnitude of the number of prey per unit
of resource. When the mutant population y; is present,
the number of prey per unit of resource is instead
(%1 + y1)/x3. Thus, the resource-limiting term should
be replaced by exp( — a(x; + y;)/x3. In fact, in general
it should be of the form exp( — e;;/¢13), where ey; is the
total number of individuals belonging to a species in
group 1.

It is necessary for our development to single out
such terms ¢; which represent those quantities of
species group j which enter the equations for group .
We call them interaction terms and incorporate them
in our formulation. Thus, we rewrite equation (1) for
the pure dynamics as

x/
—1=(1+b1)exp(—a-eﬂ _ 12 >’

X1 €13 1 + dieyy

x5

— = (1 — dy)exp(es),

X2

x4 e

x_z=(1+b3)exp<_ % —331>, (3)

where ¢;; is the population sized of the prey ( = x; in
this pure case), e;3 = ¢33 is the population size of the
resource ( = x3 in this pure case), and the other ¢; are
the jth species group population weighted mean of
¢ = c(pity)-

Before proceeding let us further clarify the nature of
the interaction parameters ¢ = (¢;). In general ¢; is a
function of the phenotypic distribution ¢; of the jth
species group and the phenotype p,. Thus we write
e; = ¢;(&; p). Such a distribution & = x; dp; records the
phenotypic density of the species group j population,
i.e. the number of individuals in species group j whose
phenotype lies in the volume dp; based at p;. For each
P €5(&;s p;) is either a number or a vector.

For example, in our resource-predator—prey exam-
ple above (equation (3)), we take!

e11(&1; 1) = prey population size — ffl("l)dﬂl,

e31(€1; p2) = prey population weighted mean of ¢,

= f62@2,"1)51(ﬂ1)dﬂ1- (4)

Note the dependence of the various ¢;(; ;) upon p,.
In particular, ¢;; is independent of p; in this example
while ¢y; does depend upon ps.

If €= (&, ..., &) gives the phenotypic density of
all species groups, by e(&;p) we denote the matrix
(e5(&s£:))ij=1,..,s (which may have vector entries) and
by ¢(&;p) we denote (¢;(E;:))j-1,....-

(iii) The pure dynamics
In the pure case the distribution ¢; is x;, where 6,
is the delta function on P; concentrated at p,. There is
I We will use 7; to denote the phenotype of the jth species group
when we are thinking of this as a variable to be integrated over.

This leaves the symbols p; and p; free to stand for the specific
phenotypes of the pure and mutated systems.
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only one phenotype present. Thus the distribution of
all species groups is given by the vector (x6,, . . .,
x,0,) which we denote by x5,. Then the overall
interaction e(xd,;p) for the pure case is given by the
matrix (¢;(x,0,;p:)). Thus we write our pure equations
such as (3) in the abstract form as

(i=1,...5),

e = (e5(%;0p50:))j=1,...s (5)

We call this the pure dynamics of the system.

This formulation has been derived in detail because
all our definitions and constructions follow from the
form of the pure equations and the interactions. Note
that, in the pure case, with the interactions given by
equation (4),

b1 = 321(x15p1;172) = Jﬁz(ﬁzﬂ"l)xlapl dmy

'xz/ = /Yi(xaeb P)

= 0o( po, p1)%1 = a1,
as is desired.
Now we consider how to introduce a small mutant
population y = (yy, . . ., y,) with phenotype p" = (p1,
.. p!). The new phenotypic distribution is given by

%0, + YO, = (%10, + Y10y, - . -, %,0, + Y, 0,.),

and therefore the equations for the new system are
given by

x = Xi(x.e,p) G=1,...9),

y=Xye.t) (eM),

= (e(%; 0y, + Y 0p3 )i =1, 5

¢ = (e5(%0y + Y;0p3 )i =1, o5 (6)

where M is the set of 7 such that p; # p. We express
the equation in this way because we do not want to
include equations for mutants which do not differ
from the original species.

We call this system the p’-mutated equation and note
that it is completely determined by the pure equations
and the interactions.

When the interactions are given by equation (4)
then

S

621(7‘15/:1 + %5;;35[’2) = sz(Pz,ﬂl)(x15p1 + ylépi)d'”l:
= Ca(pa, 1) %1 + Ga( pos p1)Y1-

This motivates an extra natural condition that we
will impose on our interactions for mathematical
convenience. Suppose that we have a population in
species group j with a finite number of phenotypes p},
... pf present. Then we denote eij(xll%l +. . .+
x{f(s@";ﬂ) bY eij(x11> ] x{:’lbz) or eij(xllﬁ RS xf;pll’ s
pt;p;) and demand that e; is a smooth function of (x{,

o X)), (pi, . . ., pt) and p;. This is the case for all the
examples discussed here. We also note that, with these
definitions, ¢;(x,0;;) = e;(x;p;). Consequently,

. . 1 .
ez'j(xj’yj}pi) = eij(xj’pi) + Y (‘xj’yj’pi)’ (7)
for some smooth function e; (x;y;; ;).
9 A C’ function is one that is r-times diflerentiable and has

continuous derivatives. For the purposes of this paper by a
smooth function we mean one that is C3.

Phil. Trans. R. Soc. Lond. B (1994)

Although in the above example ¢; is a scalar, in
general it can be a vector quantity. This is the case for
example for the system with strategic prey in § 5¢. In
general, the species groups may interact through
different average properties such as abundance, den-
sity, mean strategy, average clustering, biomass, etc.

In the general case, the variable x; is any suitable
parameterisation of the population of group ¢ and may
involve age or size structure. Thus x; and y;, may be
multi-dimensional vector quantities.

We now continue our discussion of phenotypes and
cross-equation constraints. As we have seen, the
interaction ¢; contains these cross-equation parameters
which are in the equation for species group ¢ but
depend on the phenotype of a different group ;. This
interaction will either be a constant or depend upon p;
alone. Throughout the paper, we will denote by ¢; the
vector of all those parameters and interactions which
depend upon p,. Our above-stated intention of often
identifying phenotype with parameters will usually
be implemented by taking ¢ = (¢;, . . ., ¢,) for the
phenotype vector p of the ecology when this is
appropriate.

We can now comment further on the redundancy of
too high dimensional phenotypes discussed above.
Suppose that some character = of the phenotype has no
influence upon the parameters of the equation. Then
the behaviour of the system is independent of 7. Thus,
we can get evolutionary drift with respect to = and the
system cannot be evolutionarily stable for this trivial
reason. A similar remark holds if the dimension of p is
greater than the number of parameters. Then we expect
subsets of positive dimension in P to give rise to the same
parameter values. Evolutionary drift can occur along
these. These trivial obstructions to evolutionary stabi-
lity should be removed by restricting p to only those
characters that play a definite role in setting the
parameters. One way to do this is to use the parameters
and interactions to define the phenotype. Usually, one
can take ¢ to be the ecology’s phenotype vector . In this
case, there is an exact balance in the equation s(p) = 0
for evolutionary stability (see § 4¢). Thus, generically,
we will obtain isolated points p as solutions and hence as
EsA values. This is explained further in § 4¢(i).

(b) Evolutionarily stable attractors

Now we suppose that equation (5) has an attractor A.
It is well-known that the equations of population
dynamics have a rich variety of attractors including
stationary, periodic, quasi-periodic and chaotic ones.
One advantage of our approach is that it applies to all
these cases.

We now make the standing assumption that if a
species has a zero population then equation (5) implies
that it remains zero for all time. The only way it can
become non-zero is by mutation. Then the set

Ao = {(ry) :xeA,y =0},
is an invariant set for the dynamics of the p’-mutated

equation (6).

Definition 1. The attractor A of the pure system (5) is said
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to be strongly evolutionarily stable if for all p’ in P near p, Ay
is an attractor for the p’-mutated system (6).

This means that for all " in P near p, a small invading
mutant population y will die out and the system will
relax back to its pure state. For deep mathematical
reasons (see Appendix 2), this turns out to be too strong
a condition for chaotic attractors because generically
there are always ways in which chaotic attractors can be
invaded. However, the possible invasions have measure
zero in some sense and are therefore not observed and
irrelevant. Therefore, we use the slightly weaker
definition of evolutionary stability given below. For
non-chaotic attractors the strong evolutionary stability
and the weaker form are equivalent. Experience shows
that for practical purposes this is as effective a condition
as strong evolutionary stability. Moreover, we conjec-
ture that, in systems with a small amount of stochastic
noise, the two notions are equivalent. This conjecture is
based on numerical experiments and some preliminary
mathematical research.

The weaker notion of evolutionary stability means
that the probability of very small invasions succeeding is
very small and goes to zero with the size of the invasion.
It is precisely defined as follows. Let U be a neighbour-
hood of A in the x-space. Let U® denote the set of all
points (x,y) such that xe U and |ly|| < . Let A; denote
the set of all points (x,y) € U® such that, if (x,,y,) =
g"(%,y), llyll >0 asn—o0.

Definition 2. We say that A is evolutionarily stable to p” if the
Lebesgue measure of the set of pointsin UU° but not in Aj,
tends to 0 as ¢ > 0. We say that A is evolutionarily stable if
it is evolutionarily stable to p’ for all " in P near p.

We call such an attractor an Esa. The associated
phenotype p is called an Esa value. We say that A is
globally evolutionarily stable if this stability holds not only
for small perturbations p” of p in P, but also for all p” in P.

The precise form of the above conjecture on noise is as
follows. If A is evolutionarily stable and there is some
small amount of noise perturbing the system, then with
probability one, Aj = U® for small enough &. Thus,
with noise, strong stability and this weaker notion are
equivalent.

We distinguish interior Esas from boundary esas. If p
is an EsA value and the phenotypic constraint manifold
is a smooth manifold near p then we say that the Esa is
interior. If not then we say thatitis a boundary Esa. We
use this terminology because in our examples this occurs
when Pis aninterval and one of the end-points of P gives
an ESA.

We characterize the evolutionary stability of an
attractor A, for the pure dynamics with phenotype p by
the invasion exponent 8,(p") = 8,(A,p"). This
measures the rate of growth of small invading popula-
tions with phenotype p’. The dynamics of these
invasions is, of course, given by the p’-mutated
dynamics. The correct mathematical definition of & is
given in § 4. Misleading results occur if the precise form
of this is not used, especially for chaotic attractors. We
also derive some analytic expressions for it.
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A positive growth rate 3 means that a small
population with phenotype p” will be able to invade and
either take over or coexist with the original population.
In our examples the principle of mutual exclusion holds
which means that, after successful invasion, the invad-
ing population actually takes over and replaces the
original population. Thus we observe evolution from p
to p’. The magnitude of 9 is related to the selective
pressure and determines the speed at which the invasion
initially takes place and hence the speed of the
evolution. A negative 9 implies that invasion by a
small population with phenotype p’ is impossible.
The relation of § to Esas is given by the following
theorem. For the precise hypotheses see § 4a.

Theorem 1.

1. If §,(A, p") < O then A is evolutionarily stable to p’.
2. If §,(A,p’) > 0 then A is evolutionarily unstable

to p’.

3. If §,(A,p") < 0 for all p” # p in P near p then A is
evolutionarily stable. If there exists a sequence p; = p
such that 8,(A,p,) > 0 then A is not evolutionarily
stable.

When P is one-dimensional, in order to find Esas
numerically, it is useful to choose a small positive
number ¢ and consider the functionst f,(p) =
3,(p+¢€) and f_(p) = 9,(p — ¢&). These respectively
measure the selective advantage of p+¢& and p — ¢
over p. If f,(p) > 0 then a small population with
phenotype p' =p + ¢ will be able to invade a p
population. If mutual exclusion holds, then we get
evolution to increasing values of p. If f (p) < 0, the
invading population will die out. If f_(p) > O then a
small p” = p — € population will be able to invade the
p population and if f_(p) < 0, it will not. For small
€ > 0, the zeros of these two functions approximate
the interior Esas in the following way: if for p < p,
S+ (p) > 0and for p > p., f_(p) > 0 then this indicates
that p, is an Esa value. If the inequalities are the other
way round, then we may regard p. as an evolutionary
repellor. If P is an interval then the right-hand (resp.
left-hand) end-point is a boundary Esa value if f, > 0
(resp. f, < 0) near the end-point.

Because it is only necessary to consider one of f, or
f_ to detect an Esa we will concentrate our attention
upon f, .

We illustrate these ideas by returning to our
resource-predator—prey example (3). Suppose that
our phenotype parameter p is b; or (b1,61,65). Then in
the first case only the prey are allowed to mutate while
in the second both predator and prey can. And let us
assume that there are no constraints on p. Then:

Proposition 1. There are no Esas for the unconstrained
system.

The reason is obvious but non-trivial to prove because
of the complexity of the attractors of (3) and the proof
is given in § 4¢(ii). A prey with a given phenotype b,

t In fact, if s(p) denotes the differential selective pressure defined
below, then f, (p) & &s(p). See equation (18).
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Figure 2. The graph of f, for equation (3) for parameter
values corresponding to the two cases given in table 2. The
jagged parts of the graph correspond to parameter values
where the attractor is chaotic. The jaggedness is caused by
the non-uniform convergence of time-series for the ergodic
measures of chaotic attractors.

can always out-compete one with a slightly lower ;. If
we plot f, then we find that it is always positive.
Clearly, to get evolutionary stability we need to
introduce constraints.

Indeed, if the phenotype parameters are con-
strained then (3) does have an evolutionarily stable
attractor. For example, it is natural to suggest a trade-
off between the prey growth parameter b; and its
contact parameter ¢; with the predator. It is sufficient
that ¢, increases with 4,. For definiteness, we assume
that ¢ is proportional to ;. At the same time, for
convenience, let us keep the ratio of ¢; to ¢; fixed. We

Table 3. An explanation of the construction of equation (9)

regard the other parameters a, ¢, d; as fixed. Thus our
phenotype space P is given by

P = {(b1,61,69) : b1 = 0,61/c = k,b1[ey = 1}, (8)

where £ = 1.7 and [ =440 for the first set of para-
meter values and £ = 2.0 and / = 1100 for the second
set. The phenotype space is 1-dimensional and para-
metrised by 4, = 0.

Proposition 2. If the parameter values (except b; which
is variable) are as in table I, this constrained system
has at least one Esa value.

These attractors are chaotic. We will discuss this
proposition further when we have introduced the
invasion exponent in § 4 below.

A plot of f, for equation (3) for parameter values
corresponding to the two cases given in table 2 is
shown in figure 2. In the first case there is a single Esa
value p. = 0.59 and the corresponding Esa is chaotic.
In the second there are two Esa values separated by
an evolutionary repellor. One is a fixed point and
corresponds to pi & 0.75. The other, which corres-
ponds to py & 1.1, is chaotic. Thus we see that even in
relatively simple systems we should expect multiple
EsAas. Moreover, this and our other examples show
that evolutionary stability and chaotic dynamics are
perfectly compatible, as is any other common form of
dynamical behaviour.

3. EVOLUTIONARILY STABLE STRATEGIES

One can show that if the dynamics are the mixed
strategy population dynamics of linear evolutionary
game theory, then the notion of an Esa coincides with
the classical notion of an Ess. A slight complication is
that, because the game dynamics are only frequency
dependent the equilibrium populations are not attrac-
tors for the population dynamics. They are neutrally
stable. Nevertheless, if this inessential fact is disre-
garded the theory is applicable and our approach
allows a unified treatment of the various cases within
this classical theory (such as playing the field and

~ asymmetric competition) and also deals with a much

wider range of nonlinear and dynamical situations.
We illustrate this by considering a modification of the
classical Hawk-Dove game (Maynard Smith 1982).
In this the individuals are predators and the resource
being competed for is a share of the prey population
that is changing dynamically.

term in
equation interpretation
1+b prey’s unconstrained birth rate
x . N
—oc?1 decrease in fitness of prey due to resource limitation
_ aa decrease in fitness of prey due to predation
1 + dieny prey p
e’ predator’s unconstrained death rate
exp(cky) payoff to an individual playing pure strategy ¢ against an individual whose strategy is j
E(p,es) increase in fitness of predator playing the mixed strategy p in a population whose mean strategy is s

Phil. Trans. R. Soc. Lond. B (1994)
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Table 4. Scores and payoffs for the Hawk—Dove predator
game with prey

scores payoff matrix

win V="Vox H D
injury —-C H (V-C)/2 14
loss 0 D 0 V|2

(a) Game theory in a dynamic environment

Recall the Hawk-Dove game as described in May-
nard Smith (1982, chapter 2). We will suppose that
the species playing a mixture of the two strategies
Hawk and Dove is a predator and that the resource
gained in each contest is a proportion ¥, of the prey
population x;. Thus the scores and payoff matrix
are as shown in table 4. The main difference from
the usual theory is that V = Vyx; depends upon the
number of prey x; and this is changing dynamically. If
we denote the payoff matrix by E = (E;) and use the
same notation as above, then our pure equations are}

, o G (ot
X =x(1 + b)exp( i 1T dos d1€11>,

x2/ = xzegaE(ﬁ&zz):
e = e(x0,p) = e(xd,), (9)

where E(p,q) = Z;; pq; exp(coEy), e11(&1) is the total
prey population [&;(#;)dpy, e15(E5) is the total predator
population [&;( py)dps and ey (&,) is the mean predator
population strategy

Jpzfz(Pz)dﬁz/f Ea( po)dpe.

The biological interpretation of the various terms in
the equation is given in table 3.

1 One aspect of our treatment of linear evolutionary games is non-
standard. If the payoff to strategy ¢ against strategy j is E;, then
the contribution towards fitness is taken to be exp(cE;) where ¢ is
some constant largely set by the timescale of the interactions.
Then the mean fitness of an individual playing the strategy p in a
population whose mean strategy is ¢ is E(p,e) = Z,; p;¢; exp(cEy).
For discrete time dynamics this has a number of advantages while
also giving the same ordinary differential equation as is usual for
the continuous time dynamics. The advantages include: (i)
natural positivity, unlike E; exp(E;) cannot be negative; (ii)
invariance of the dynamics under addition of a constant to a
column of the payoff matrix £ and (iii) sensible scaling with the
unit of time 7. For example, in the classical Hawk-Dove game
Eyy = (V- C)/2 which can be negative, and this cannot be
overcome by adding a constant to the fitnesses as this changes the
classical version of the discrete-time dynamics as formulated in
Maynard Smith (1982). Replacing the payoffs such as Eyy by
terms of the form exp(cEyy) overcomes all these problems for
mappings and preserves the continuous-time dynamics. The
continuous-time dynamics are derived as follows: Assume that E;
is the contribution to fitness over a small time period 7 and that
¢ = kt. Let W(p,e) = Z;; pi¢;E;. Then,

x(t+ 1) —x(8) = (Zpitejv exp(ktk; — 1)>x(t) = TtW(p,e)x(t) + O(z?
[S)

and therefore in the limit 7 — 0 we obtain dx/dt = W(p,e)x(¢).
This is the same differential equation as that obtained in Taylor
& Jonker (1987) and Zeeman (1979). Finally, we stress that our
preference for this formulation does not affect our conclusions in
any important way.
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1-

10“x f.(p)

0 02 0.4 0.6 08 1
proportion of time playing hawk strategy (p)

Figure 3. The graph of f, for the Hawk-Dove predator-
prey system given by equation (9) for parameter values as
given in table 5 and for variable injury cost C.

Note that in this case ¢;(¢;) is a constant indepen-
dent of p. We have included the death rate — ¢ in
the equation for the predators so that, without the
increase in fitness gained by winning prey, their
numbers would naturally decline.

It will be shown in § 4¢(iii) that this system has an
EsA at px = V/C where V = Vo % and #, is the average
value of x; with respect to the natural measure v of the
attractor for (9) when the phenotype is given by p
(£, = 5x1v(dx))‘ This fact is also clear from the graph
of the function f, (see §2) which was calculated
numerically and is plotted in figure 3. This Esa
corresponds to that for the classical linar game.
However, it is also clear from this plot that there is a
significant difference because p = 1 is also a boundary
EsA value.

The reason for this can be clearly seen from figure 4
where we plot that the observed value of V/C against
the proportion of Hawk behaviour. Since this propor-
tion is equivalent to p, we use p to denote it. Note that
one of the values p, where the graph crosses the
diagonal corresponds to the Esa and the other p, to the
evolutionary repellor. From the graph one can easily
see the following: if p is less than p, then the proportion
of Hawk behaviour is less than F/C and therefore
there is selective advantage to more hawkish beha-
viour. By similar réasoning, if p is greater than p. and
less that p, then p > V/C and more dove-like behaviour

T T T T 1

0.2 0.4 0.6 0.8 1
14

Figure 4. The graph of 7/C against the proportion of Hawk
behaviour, where the injury cost, C, is 75.

mean resource value / injury cost (V / C)

(=]
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Table 5. Parameter values for the Hawk—Dove system given
by equation (9)

b k 61 c2 d o C I

0.5 1000 0.01 0.001 0.005 1.0 75 variable 0.006

is selected. But if p is greater than the evolutionary
repellor then p < V/C and therefore more hawk-like
behaviour is selected. This explains why p=1 is a
boundary Esa value.

For low p the system has a fixed point as its
attractor while for larger values it has a quasiperiodic
attractor. In this example the Esa is a fixed point.

Later in § 5d we will see that this example has
particularly interesting phenotype dynamics for both
the corresponding mixed strategy and polymorphic
population problems. In the first case it has a highly
structured asymptomatic distribution of strategies
and, in the second, it displays complicated oscillatory
behaviour.

4. THE INVASION EXPONENT

This section contains an important characterisation of
evolutionary stability which provides the mathemati-
cal and computational tool for analysing examples.
Since the full-blown definition for general attractors
requires the use of less well-known mathematical tools
(such as invariant measures), we start by discussing
the simple case where the attractor A of our pure
system is either a fixed point or a periodic orbit. After
describing the results for such systems we consider the
general case and chaotic attractors.

Firstly, we consider when an attractor A of the pure
dynamics with phenotype p is stable to mutation from
phenotype p to p’. The mutated dynamics are given by
equation (6).

We may temporarily suppress the reference to p and
¢’ as they are fixed for the present discussion. Let us
also denote by y the vector (y;) where the index ¢ runs
over those 7 such that p] # p;. The equation (5) for the
pure dynamics defines a mapping x> x" = f(x) and
equation (6) for the p’-mutated dynamics defines
a mapping (xy) > (¥y) = g(xy) = (@1(xy), L(xy))
where g,(x,0) = f(x) and g,(x,0) = 0.

We are interested in determining whether or not
there are small invading populations y which will
grow under iteration of the mapping g. We show that
such invasion is impossible if this is the case in the
system where the equation for y is replaced by its
linearisation. This defines what we call the variational

mapping:
(%) ¥ (f(x), T, y), (10)

where T, = d,g(x,0) is the partial derivative of g with
respect to y evaluated at (x,0). Below we show how to
calculate this for some important examples. The
action of the mapping V on y is linear. Thus, we may
expect that on average, under iteration, the length ||y]|
of y grows or decays exponentially fast. The exponen-
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tial growth rate associated with a generic choice of y
and x in the attractor A will provide us with our
invasion exponent.

Now let us consider the simplest case where the
attractor A = {x,} is just an attracting fixed point.
Then the action of V on the x component is trivial and
the map reduces to

y T, y,

where 7, is the linear map d,g(%,0). Thus we can
apply standard theory to deduce that the behaviour
is determined by the eigenvalues of 7. If all the
eigenvalues of 7, are inside the unit circle in the
complex numbers C then the system is stable. We
express this in the following way. Let A denote the
eigenvalue with largest modulus and let y = log|A|.
Then the system is stable to invasion by a small
population y with phenotype p” if ¥ < 0 or equiva-
lently, |A| < 1.

A similar result holds if our attractor is a periodic
orbit xg, ..., x,_; of period ¢g. Then we let A be
the eigenvalue with largest modulus of the product
T, , ... T, corresponding to iterating once around
the orbit. Again, the system is stable to small invasions
if x = log|A| < 0.

To the attractor A of fand a mutated phenotype p’
we are going to associate a number 8,(A,p’) which
characterises the stability of A with respect to the
mutation p’. In the simple cases above we would set

8(Asp") =1

Then A is evolutionarily stable if for all p’ # p near p,
3,(A,p’) < 0. Moreover, if 8,(A,p") > 0 for p’ arbitra-
rily near p then it is evolutionarily unstable. We now
want to extent this to general attractors and especially
quasiperiodic and chaotic ones.

(a) Definition of 8 and its relation to evolutionary
stability

We can motivate our approach to this by noting
that the number y above is the growth rate of a typical
y vector. This means that if (x,,y,) = V"(r,y), then |[y,|]
grows like exp(ny) or more precisely that

1
x = lim —~log]ly,|l

We now generalize this idea to general attractors A.
Let T} denote T, 0 ... 0T,. We denote by || T}l
the norm of 777 which is defined as

171 = sup LA
y=o Yl
Then, a typical vector y grows at the same rate as
IT7ll. Thus, in each of the above examples, y =
lim, o 1~ Y| T7].
Now consider the general situation. With p’ fixed let

) 1
x(x) = xp(x,p") = lim sup ;logIIT;’II- (11)

We will show that evolutionary stability is determined
by the sign of y(x) as x ranges over the attractor A.
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The different values that y(x) takes as x varies are
given by the ergodic measures of A. For general
attractors A, we must express our results in terms of
these.

A probability measure v is invariant if v(f~}(E)) =
v(E) for all subsets £ where v(E) makes sense. An
invariant measure is said to be ergodic if for all
Jf-invariant sets E, v(E) is either 0 or 1. This is
equivalent to the following condition: for all conti-
nuous functions v(x),

n—1

lim = Y o(fi(x) = j o(x)v(dx),
n—00 N j=0
for a set of x of full v measure. Here, and in what
follows, we denote the integral with respect to a
measure v of a function v(x) over all x by [v(x)v(dx).

The simplest example of an invariant measure v
occurs when A = {x} is an attracting fixed point.
Then, for v, we take the delta function 6, concen-
trated at x,. It is invariant and ergodic because
V(E) # 0 if and only if xy€ E. Similarly, if {x, . . .,
x,_1} is a periodic orbit of period ¢, the averaged delta
function

g—1
v= 0 ¥ 0,

is an ergodic invariant measure. And if A is an
irrational invariant circle and x€ A then

g-1
v =lim, o (1/9) Y, Oy
i=0

is an invariant ergodic measure. In each case, there
are no other invariant measures and the attractor is
said to be uniquely ergodic.

However, for a chaotic attractor there exist
uncountably many ergodic invariant measures. Often
one of these has the property that for all continuous
functions v(x)

n—1

lim - Y o(fi(x) = jv(x)V(dx%

n—» o0 ”j=0

for a set of x of full Lebesgue measure in the basin of
the attractor. There can only be one such measure
and, if it exists, it is called the natural measure of A. It is
clear that for each of the simple cases mentioned
above the given ergodic measure is natural.

The following proposition follows from the subaddi-
tive ergodic theorem (Kingman 1976, Theorem 1.8;
also see Ruelle 1979, Theorem 1.1 and Corollary)
applied to f,(x) = logl| T7/]l.

Proposition 3. There exists a set Ag <= A with the
following properties.
(i) V(A — Ap) =0 for all
measures V.
(ii) If xeA, then x(x) exists as a limit i.e.

invariant probability

(x) = lim ~1ogl T2 = inf ~ log] 72| (12)
(iii) x(x) is f~invariant i.e. x(f(x)) = x(x).
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(iv) If v is an ergodic invariant probability measure
on A then there exists a set A, © Ay such that
v(A,) =1 and for all x,x"€A,, x(x) = x(x).

The last part of this proposition tells us that for each
ergodic invariant probability measure v,y is constant
almost everywhere and therefore given by a single
number. We denote this by x(v). By proposition 3,

x(v) = fX(X)V(dx)'

Consider the approximations x,(x) = n~' log|| T7|.
In general, for chaotic attractors, the set of limit
points of the sequence x,(x) as x ranges over the
attractor A forms a closed interval L (p") =
[L,(p"),r,(p")]. Moreover, in lemma 1, we will show
that [,(p) = 1 = r,(p). For fixed points, periodic orbits
and quasiperiodic attractors, [,(p’) is a single point
because they are uniquely ergodic.

Theorem 2. Suppose that 7,(p") < 0. Then, for all xe A,
if |lyll is sufficiently small and if (x,y,) = g"(x,y),
lyll = O as n— co. If A is such that Z,(p’) consists of
a single point 7,(p") for all " near p then A is evolu-
tionarily stable in the strong sense if 7,(p") < 0 for
all p” # p near to p.

Unfortunately, if A is a chaotic attractor, it is only
for very exceptional systems that Z,(p’) consists of a
single point. We point out why in Appendix 2.
This is part of the reason why for generic chaotic
attractors the strong form of evolutionary stability
cannot hold. s

We will suppose that our attractor A has a natural
measure v, and that this is absolutely continuous with

respect to Lebesgue measure on unstable manifolds.
We then define§

() = (A ') = x(va) = Jx(x)v*(dx)'

Since v, is a natural measure it follows that for x in
some set of full Lebesgue measure in the basin of

Ax(x) = 9,(¢)-

Definition 3. 9,(p’) is called the invasion exponent of A

for p’.

Theorem 1.

1. If 9,(A,p’) <0 then A is evolutionarily stable
to p’.

2. If 9,(A,p’) > 0 then A is evolutionarily unstable
to p’. .

3. If 9,(A,p") <O for all p” near p then A is evolu-
tionarily stable. If there exists a sequence p;,—p
such that 9,(A,p;) > 0 then A is not evolutionarily
stable.

The proof of this theorem which is very technical
will be given in a separate paper.

(b) Expressions for 9 and coevolution

We consider how the individual species groups
contribute to the invasion exponent of the whole

§ For obvious reasons we prefer the notation 9,(p") to §,(A,p").
However, the reader should be aware that it is possible that the
pure system have two attractors A; and A, In this case, it is likely
that 9,(Ay,4") # 9,(Ag,p") in which case the notation 9,(p’) is
ambiguous.
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system. The result is summarized in proposition 4
and its corollary. En route we derive the important
equation (15).

We start by calculating 7,. The equation for the
mutants given by equation (6) is y; X/ (y,e,p’) where
6= e(xy,p, 0’5 p7) = e(x, p; i) + el(%%/’a/’/;/’f) 'y
Recall our standing assumption that if y, = 0 then
y; = 0. It follows that this equation must be of the
form

4 = Fi(y.e.0") " v (13)
where F{(y,e,p’) is a linear operator. Note that the
partial derivative with respect to y at y =0 of the
right-hand side of equation (13) is zero if i # j because
the right-hand side is divisible by y. Thus 7,y =
d,85(x,0) *y = ¥ where y/ is given by (13). In other
words, the ith component of 7, *y is given by

(T y)i=T.i vy,

where

Tx,i = F;(an(%o)%/)' (14)
Therefore

172 = max|| T2, (15)
where T, = Tpn-1py ;... T, Let

Xi(%) = Aip(x,p") = limsup n " log || T2,

and 9; ,(p') = x:,(v*¥) = [%:,(x)v*(dx). Then by equa-
tion (15), x(x) = max;x;(x) and 8,(p") = max;
8, ,(p?) = max,x,(v+). Thus we have proved:

Proposition 4. yx(x) = max;x,(x) and 3,(p") = max,
3,:(¢"). In other words, the growth rate of a small
invading population given by y is the maximum of the
growth rates of the populations consisting solely of the
individuals in this population which are in species
group . A mixed population only invades as fast as
the species groups that it is made up of.

Corollary 1. A is evolutionarily stable to p’ if for each ¢
such that p/ #p;, 9;,(p/) <0, ie if it cannot be
invaded by a group consisting solely of the individuals
in the population which are in species group i.

(¢) Nonlinear criteria for ESAs and selective pressure

We start with the remark about cross-term con-
straints on the phenotype which was promised in

§ 2a(ii).

Remark 1. Cross terms arise in interactions involving
the jth phenotype in the ith equation. An example is
the term ¢ in equation (3). But, by equation (14), T,
only depends upon x, ¢(x,p;p!) and p’ and all cross-
terms have to enter through e¢. In particular, the
dependence upon p” is only through p;. As in § 2a(ii),
let ¢; denote the vector of all those parameters and
interactions which depend upon p; and let ¢/ denote
the value corresponding to p’. Then 7, only depends
upon x, p and ¢/ and we write T,, = T,,(p,¢/). This
fact is used in what follows.

Phil. Trans. R. Soc. Lond. B (1994)

(i) Dufferential selective pressure

We now consider the case where , is a scalar.!! This
is the case for all our examples. Then T,; is just
multiplication by a scalar. As we noted in the above
remark, as far as the dependence of 7,; upon p’ is
concerned it only depends upon g¢/. We define
Hi(xsqi/) = 0i,p<x>qi/) = 10g|7—;,il- Then

n—1

1i(x) = lim sup — 3, 6,/ (x),47)-
n— 00 iZo

J

where the lim sup is a limit if xe Ay. Moreover, if v is
an invariant measure,

Xi(v) = j@,(x,q[)v(dx),

is the value of x;(x) for a set of x of full v-measure in A.
Note that y,(x) and y,(v) depend upon both p and ¢.
The dependence upon p comes from the cross-terms
and also the averaging over x using v.

Fix p and the corresponding pure attractor A which
is not necessarily an Esa. Expand 0(x,q/) = 0,(x,q/) =
log|T,| as follows using Taylor’s Theorem:

0(x,q)) = 0(x,q:) + 4,0(x,4;) * (¢ — q.)
1
+ 5429(%%) (g = 9)* + O(gf — ¢)%). (16)
Thus,

JG(%f]{)V(dx) = Jf’(x,qi)V(dx) + (qugﬁ’(x,qz-)v(dx)> :

1
(4 —q) + <§fd§'9(x>qi)V(dx)> (g — q)*

+0((g — 9)°)-

Lemma 1. 1f each y; is either one-dimensional or an
age-structured population in the sense of Appendix
2, then ¥, ,(x,¢;) = lim,_, x; ,(x,¢/) = 0. In the one-
dimensional case, this is equivalent to x;(v) =
JO(x,g,)v(dx) = 0 for all invariant measures v on A.

The proof of this lemma is given in Appendix 2. It
follows immediately that the first term of the right-
hand side of the previous equation is zero. Then, if v,
is the natural measure,

8.0(4) = <qu;9(x,qi)v*(dx)> (- 4)
1
+ <§ fdfﬁ(x,qi)v*(dx)) = 0)* + OU(g - 997,

1

=s5(p) (¢ —q) + 3%(p) " (4 = 7)* + O((¢/ — ¢)%).
(17)

Definition 4. We call s(p) = [d,0,(x,q)v.(dx) the dif-

ferential selective pressure of the ith species group.
The differential selective pressure of the ecology is the

function s(p) = (so(p), - - -, 5(p)).

I Analogous results can be proved for the case where y; is an age
structured vector. However, in this case, the analytic dependence
of §,(p") on p” has a more complex proof and its derivative with
respect to p’ has a more complicated formula.

9 In a later paper (Rand 1993) we will argue that the selective
pressure should be understood as a 1-form on the phenotype
space. This approach clarifies the meaning of fitness in complex
dynamical ecologies and aids calculations of evolutionary stabi-
lity and instability in such situations.
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Let @, denote the set of values taken by the
parameters ¢; as p; varies over P, When ¢; = p;, as
is often the case, then @, = P, We now make the
reasonable assumption that for all ¢;€ @; thereisa pe P
such that ¢; is the value corresponding to p.

Let d; be the dimension of @;. Then s,(p) is a linear
mapping from R™ to R. The set of such mappings is
equivalent to R™ Thus s5; can be thought of as a
mapping from P to R"™ The second derivative
d20(x,g;) is given by a d; x d; symmetric matrix. Thus

si(p) = Jdiﬂ(x,qi)v*(dx),

is given by a d; x d; symmetric matrix M = M;. We say
that this is negative definite if for all d-dimensional
vectors v # O,M * (v,0) = v'Mv < 0. In the case where
d; = 1, this just means that the scalar quantity s;/(p) is
negative.

If A is an interior EsA, then we must have 5,(p) =0
for all 7. Otherwise, by (17), for some 4, 3, ,(¢{) would
be positive for some ¢/ near g; in @, Conversely, if
si(p) = 0 and s/(p) is negative definite for all z, then
3,:(¢/) has a maximum at the value of ¢; correspond-
ing to p for all 7, and therefore A is an £sa. Because this
is important, we sum it up in a theorem.

Theorem 3. If p is an interior point of P, A is an
Esa if, for all ¢, 5,(p) = 0 and s57(p) is negative definite.
Conversely, if A is an Esa then s;(p) = 0 for all <.

Note that as p is interior, it is implicitly assumed
that P is a smooth manifold near p and that each s; is
smooth near p. In solving s(p) = 0 it is only necessary
to check s;(p) =0 for all species groups ¢ that can
mutate. Species groups that are for some reason
constrained to the pure phenotype value p can be
ignored for this purpose.

In the equation s(p) = 0, each term s;(p) can be
considered as an element of R% i.e. is d-dimensional.
Thus s(p) is d-dimensional where d = X, d;. In general,
dim P > d so that it is reasonable to expect s(p) = 0 to
have solutions. If we choose p = ¢ (see the discussion of
phenotypic redundancy in § 2a4(ii)), then dim P = d,
our equations are balanced and we expect that,
generically, any solutions of s(p) = 0 will be isolated
points.

We note that for the following cases s;(p) is simply
found: (i) for a fixed point A = {x}, s5(p) = max;
dy; 0; ,(%0,¢;); (ii) for a periodic orbit A = {xo, . . ., ,_1},

n—1
s(p) =n"" 420 dy 0; (%, 13);
i=

and (iii) for a quasiperiodic attractor

n—1

Si<p) = lim”_,oonAI 2 dp,fei,p(ﬂ(x):qi)7
=0

ifxeA.

Consider the case where P = P; is one-dimensional
and a single species group is mutating. If s(p) =
s5:(p) > 0 for pe P = P, then for p’ slightly larger than
p, 9,(#") > 0. Thus, if the principle of mutual exclu-
sion holds (as it does in our examples), then one will
observe evolution away from p towards higher values.
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Moreover, we observé that in this one-dimensional
case the functions f, (p) and s(p) effectively determine
each other. By equation (17),

Spilxp’) = s(p) = (4" = p) + O = p)*).
Therefore, since f, (p) = 0,(p + &),

S (p) =s(p) &+ O, (18)

Thus in calculating f, (p), as in §2b, we have
effectively calculated s(p).

To illustrate the ideas of this section and the generic
form of 8,(p’) when p is an Esa value, we use these
facts to analyse the resource-predator-prey and
Hawk-Dove models.

(i1) ESAs in the resource—predator—prey model

We consider why propositions 1 and 2 are true. The
equation for the mutant prey y is y'fy = ¢(x,y,p")
where

. _ m+y %2
¢(%%P>—(1+b>exp( o Xs 611+d1<x1+y)>’

and b = b; and the other parameters are functions of

p’. Thus || T,J| = ¢(x,0,p") and therefore
X1 Xg

) = ) = b) —a— — qg———.

0(x,f) = Or(x,p') = log(1 + ) — a2 — =

In the unconstrained case,
di(x,p) = (1+b)"1>0.
Thus, if p’ differs from p only in having a larger &
value, then the system is unstable to p’.

On the other hand, for the constrained system of
proposition 1,

, X1 b xy

O(x,p’) = log(l + b) — ot;; T ITT am
where [ = 440 for the first set of parameter values of
table 2 and / = 1100 for the second set. Therefore,

AN -1_ _f'z—"
40 (x,p') = (1 + b) 10 + dyer)

Letp=1"" ng(l + dyxy) “'vu(dx). Then

s(b) = jdbﬂ(x,p’)v*(dx) =(1+8)"'—p,

whence s(b) =0 if b=p~'— 1. Because 0 < u < 1,

ESA 1l —»>

Figure 5. A plot of the function 3,.(4’) for the two Esa values
of the resource-predator-prey model corresponding to the
second set of parameter values in table 2.
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there is such a wvalue. Call it b,. Moreover, as
di0 (x,b,) = —(1+b,) "2 <0,5(b)= —(1+b) " %2<0.
Consequently, this value corresponds to an interior
EsA for the constrained system. Note that this argu-
ment does not exclude the possibility of more than one
ESA.

In figure 5 we show the graphs of 9, for the two Esa
values p for the second set of parameter values.

(iii) ES4s in the Hawk—Dove predator—prey system

We now consider the Hawk-Dove predator game
with dynamic prey as discussed above in § 3a. For this
example, !///y = ¢(x,%ﬁ/) where (I)(X,p/) = ¢(x,0,l7/) is
given by

G(x,p") = ™) pity exp(cky),
tJ

- exp( — 0+ ch{ijy) + O(c?),
iy

as
Ybi=1.
nJ
Thus, ignoring terms which are of order ¢2,
O(x,p') = — 06 + ch{ij,j.
ij

Because p = (h,d) where k is the proportion of time
playing Hawk and d = 1 — 4,

0= —0— (CI2) bt + (V]2) (K — h) + (V]2),

where V = Vyx;. Thus d,0(x,p’) = — Ch/2 + V/2 and
[d,0 = — Chj2 + Vo5,/2 where %, = Jxva(dx). It fol-
lows that

s(p) = (1/2) (Vo&, — Ch).

Thus s(p) = 0 if for the natural measure v+ for the
phenotype p,

h = Vyi/C.

However, in this case d20 = 0, and therefore for this
value of p,

S(p) = 0.

(iv) The generic structure of ,(p’)

The degeneracy expressed by equation (19) is a
result of the linear dependence of the payoff upon p’.
For this linear game theory, it is the reason why it is
necessary to use the second-order condition in the Ess
criterion (equation (2.4) of Maynard Smith 1982).
For general nonlinear games or dynamical systems
such second-order conditions are not needed. This is
illustrated by the previous example. For such generic
cases, we observe that if p is an Esa value then the
invasion exponent function 8,(p’) has a quadratic
maximum at p where it takes the value 0. This is the
situation shown in figure 5.

(19)

(d) The invasion exponent for Lotka-Volterra
systems

Following Hofbauer ¢t al. (1987), we consider the

Phil. Trans. R. Soc. Lond. B (1994)

class of systems given by

d
x{:xiexp{ri— Zaﬂg} i=1,...,d).
i=1
We refer to these as Lotka—Volterra mappings. We
show that for these systems, the invasion exponent is
given by the value of § at a fixed point even when the
attractor is chaotic. A similar result holds for Lotka-
Volterra odes.
In our formalism the pure equation is given by

d
x{ =x,»exp{r,«— D a,]»ey} (i=1,...,4d).

=1

(20)

where ¢;(&)) is of the form fo(,);( p;)dp; where a(p) is
any smooth function of p; and the parameters r, = 7,( p)
and g; = a;(p) are functions of the phenotype p.

We assume throughout this section that our attrac-
tor A is bounded away from 0 and o in the following
sense: there exists K > 0 such that for all xeA,
K-'< |« < K.

We now prove the following result:

Proposition 5. For such Lotka—Volterra
3,(A,p") = max; ¢,(%) for some fixed point .

systems

This result makes it particularly easy to check the
evolutionary stability of Lotka—Volterra attractors
even if they are chaotic.

Proof. If xe A, consider

ln—l

e 420 Fix).

Now, if ¥" = (xf, . . ., x7) = f"(x),
O L=
" logx—,-" = ;El vi(f4 (%),

d
where Y, =1, — Y a;x;.
j=1

Thus

Because A is bounded away from 0 and oo, the
left-hand side converges to 0 as n — 00 . Thus, if % is a
limit point of the sequence #", then ,(¥) = 0 for all ;
and therefore % is a fixed point of (20).

The linear operator 7,; is just multiplication
by exp((x)), where $i(x) = 1/ = Safje(x,p) = 1/ —
Xajja(p)x; and # = r(p'), a; = ay(p’). Therefore, if

y'=T "y,
l yz ln—l ) -
o, =—1 g?—_ Z i(f(x)) = i(x"),
i J=

as ¢; is affine in x. Thus, if & is a limit point of the
sequence a,, there exists a subsequence #, such that the
two limits

a = lim ¢;(#"),
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and ¥ = lim,_, , #". exist. Thus,
&= ¢,(%).

But, by the above, ¥ is a fixed point of (20). Taking
1
& = yi(x) = lim sup —log||7";|| = lim sup ¢;(%"),
n—soo N n— o0

we deduce that
%(x) = ¢i(%),
where % is a limit point of ¥ and hence a fixed point of
(20).

This proves that all limit points of n ! log||T"Z;|| are
of the form ¢,(%) for some fixed point.

(e) Numerical calculation of $

Assuming that one knows the equations of motion,
the simplest way to numerically compute 3 is to use
the definition directly. One computes

n—1
T:,i = 1_[0 F;((O,dxub;pi/),p/),
i=

along an orbit x, = f"(x) and finds its largest eigen-
value X;,. Then, for large n, 9 is estimated by max,3
where 9; is estimated by n _llog/\i,,l. A more reliable
estimate of J; is obtained by plotting A,, against n and
making a least-squares estimate of its slope but this
requires more numerical effort. As a compromise one
can do this only for a subset of the set of n.

If F; is given by a primitive age structure matrix as
in Appendix 2, then all of the non-zero entries a of
T'?; have the same growth rate which equals 9;. Thus
we can use this to estimate 3; and avoid the calcula-
tion of eigenvalues. We estimate 9; by the slope of the
graph of 4 as a function of n. In this case a
least-squares estimate is practical.

When y; and hence F;(0,e(x, p; p/),p’) is a scalar, let

0:(x,p") = log F{(0,e(x, p; 1), 1)

Then to estimate 3; plot the sums
0”(x,p’) = Z ai(xj:p/>

against n and estimate the slope.

Finally, we describe another way to calculate 3. We
describe this in the context where we have the
equations of motion. Recall that we denote by f the
mapping defined by the equation (5) for the pure
dynamics Equation (6) for the p’-mutated dynamics
defines the mapping (x,y) = (x';y") = g(xy) = (g(x9),
g2(x,y)) where g;(x,0) = f(x) and gy(x,0) = 0.

Firstly, we fix a small number d > 0 and a fixed
multiple D =md of d. Given x€A, let x; = f(x).
Given a y vector y, of length d, we then define a
sequence z; of y vectors as follows. Let zy =y, If
llz{l < D then we set z;,; = ga(x;,2;). Otherwise, we set
z; 11 = ga(x;,2]) where z; = dzf||z]|. In the latter case, or
ifi = 0, we call ¢ a jump value. Corresponding to each
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jump value ¢ we associate a number

Izl
d; = d log —=
d i1+ og d >
where j > ¢ is the next jump value. Then 9 is
approximated by the slope of the best fitting straight
line through the set of points.

{(i,d;) : 7 a jump value},

when d is taken very small.

5. PHENOTYPE DYNAMICS

We now consider the dynamics on phenotype space
implied by the system consisting of both the pure
dynamics and the interactions. A distribution of
phenotypes is present in the population and we study
the way in which it changes in time. Recall that the
phenotypic constraint manifold P is a subset of the
product P; x . x P, of the s phenotype manifolds
Py, . . ., P, corresponding to the s different species
groups. We let x,( p;) denote the phenotypic density of
individuals in species group i i.e. x;(p;)dp; is the number
of individuals in species group ¢ whose phenotype lies
in a volume dp; based at p;.

(1) Moutation-free dynamics

The (mutation-free) dynamics are then given by

X (pi) = Xi(x(p),exp)s

¢ = e(x; ), (21)
where X; is given by the pure dynamics equation (5),
x(p) = (xl(pl)) MR xx(ps))’p = (plﬁ RIS ps) and e(":ﬁz)
is the value of the interactions corresponding to the
distribution given by x.

This defines a dynamical system on the space of
functions of the form x(p) = (x1(p), . . ., x,(p)). Let us
denote the mapping given by this by L, i.e. L(x) = x’.

The pure dynamics (5) follow from equation (21)
by taking for x; the distribution x,; for each j where
d,; is the delta function on P; concentrated at p; (i.e.
each species group j is represented by a single
population of x individuals each with the phenotype
£;). The p’-mutated dynamics (6) are then also given
by (21) by taking for x; the distribution x;)é,,j if p = p;
and x03, + y’3,, when p! # p,.

(i1) Mutations

Now, we consider how to add mutations to this
process. We discuss this in terms of distributions on the
phenotype space. These represent the distribution of
the phenotypes present in the system. In the pure case
where only a single phenotype p; is present in species
group j, this is represented by a delta function J,. We
assume that under mutation in group j such a pure
situation changes to the probability distribution
M;(6,). This means that after one time step, mutation
causes the distribution of phenotypes to change from
), to M;(,). Usually, M;(,) will be a smooth
distribution close to the delta function §,. Now we can
use this to consider how a general population given
by x(p) = (x1(p1), - - -, x,(p,)) is changed by mutation
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to M(x)(p). Because x,(p;) = jx(qi)épjdqi, the general
mutation is given by

Mi(x) () = Jx(%) (M(3,)(;))dg; (22)

Note that A, is a linear operator. Now if x = x(p) then
the phenotype dynamics are given by F(x) = M(L(x))
ie.
L M
x —————— L) ———> M(L(x)),

local dynamics mutation process
where

M(X)(p) = (Ml(x1)<pl)) ] Ms(xs)<ps))

(a) Game dynamics

Before proceeding we note that, in the case of linear
evolutionary games as in § 3 above, we obtain the
Hines—Jonker—Taylor-Zeeman dynamics. Recall that
the pure dynamics for this system is given by,

¥ = xE(py),
e = e(’@»ﬁ) =p,

where the interaction ¢ is the mean population
strategy. (Note that ¢ = ¢(x, p;7) is independent of 7 in
the case.) The phenotype vector is p = (p1, . . ., p,)-
Thus the mutation-free phenotype dynamics are given
by

x(p) = x(p)E(pse),

1
¢; = mean population strategy = ijix(p)dp,

where N is the total population [x(p)dp. We deduce
that

vV (p) = aL(p,e)v(Pp),

where v({) = x(¢)/N gives the strategy frequencies, ¢
is the mean strategy and « is a normalising factor
keeping the total probability mass fixed at I, i.e.

o= f E(pye)dp = j f E(p.q)v(g)dq dp. (23)

This is the equation given in equation 4.1 of Hines
(1987) and Zeeman (1981) for the dynamics of a
distribution of mixed strategies.

Hines (1980) showed that if p is an equilibrium for
the Taylor—Jonker dynamics then any distribution v
with mean p is an equilibrium for the above dynamics.
Furthermore, he proved that the mean p is stable with
respect to all mixed strategy perturbations v if and
only if p is an Ess. Zeeman (1981) reinterpreted this by
directly looking at the dynamic on the infinite dimen-
sional space of measures on the simplex.

(b) Computational methods

The implementation of the phenotype dynamics
involves the discretisation of the phenotypic constraint
manifolds P, If they are one-dimensional then we
approximate them by only considering an equally
spaced lattice of phenotypes p/, j=1, ... N. We
denote the spacing by a = o(P) and always check that

Phil. Trans. R. Soc. Lond. B (1994)

our results are not dependent upon the particular
choice of a. The phenotypic population distribution
x,(p;)dp; is then approximated by the vector (x;(pl),
<o x(p")). (Strictly these entries should be scaled by
the volume which is a power of «, but this makes no
difference and is only relevant if one is interested in
taking the continuum limit.) The interactions ¢; which
are all integrals over dp; in the examples that we
consider then become sums.

The mutation process is taken to be of the following
form

c
M;(8,) =% Y A S, (24)
l=—c¢
where Z is a normalising factor chosen to ensure
that /Wj(éf,j) defines a probability distribution and
0 < A < 1. The parameter X is the mutation rate. Of
course, in this discretized situation, the delta function
d, is just represented by the vector in R all of whose
entries are zero except that corresponding to the Ith
entry.
In all the cases treated here we take ¢ = 1.

(¢) Phenotypic attractor for the constrained
resource-predator-prey model

Recall that in this constrained problem we only
allow the phenotype of the prey to vary. Thus only b4y,
¢, and ¢ vary and these are related so that the
phenotype p = p; is determined by &, and hence
identified with it. Therefore, the discretized phenotype
dynamics for the resource—predator—prey system
whose pure dynamics and interactions are given by
equation (3) are

I\7 !
(x1l) — (14 bl)exp< _ OCEE _ €12 >,

X1 €13 1 + dieyy
x5
— = (1 — dy)exp(en),
Xg
x5 €33
P (1 +173)CXP(— v —631>, (25)
0.8
8
=
kS
=
204
(=%
0 04 08 12 16

b,

Figure 6. The asymptotic distribution for the phenotype
dynamics of the resource-predator—prey system whose pure
dynamics are given by equation (3) with parameter values
from the first set in table 2.
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mean prey phenotype

0 100 200
time (in iterations x 20)
Figure 7. Time dependence of the mean phenotype showing

convergence to the Esa value.

¢; = population size of species group j = Y x/
]
(y =11, 13 and 33),
¢; = species group j population mean of ¢; = Y clxf
]

(i = 21 and 31).

Here x{ = x,(p/) and ¢ = ¢(p/,p{). As we are only
allowing the prey’s phenotype to change, ¢35 = ¢33 = %3
and

l /
€19 = (1 Xg.

The parameter values are as in table 2. Recall that for
the first set of values, there is a single Ess at p = p=.
There is a distribution & (p{) such that, under the
phenotype dynamics (with the mutation process
defined by equation (22)), any initial distribution
converges to & (pi). This asymptotic distribution is a
‘smoothed out’ delta function and is shown in figure 6.
Note that it is very much wider than the mutated
delta function M;(d,,). In figure 7 we show the time
dependence of the mean phenotype. It shows conver-
gence to the Esa value.

Not surprisingly in the second case, where there are
two EsA values separated by an evolutionary repellor,
the behaviour is more complicated. Any initial condi-
tion converges to one of two asymptotic distributions,
but to which depends upon the initial condition and
the mutation rate. If the latter is relatively large, then
the asymptotic state is always a ‘smoothed out’ delta-

60 |
3
g
= 4
o
o
S 201

ESA 1 e ESA2
0 0.5 1 15 2
b,

Figure 8. The two asymptotic distributions for the second set
of parameter values in table 2 for the resource-predator-
prey system.
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Figure 9. Time dependence of the mean phenotype showing
convergence to the two EsA values.

function close to the larger Esa value as in figure 8. If
the mutation rate is smaller and the support of the
initial condition is very close to the smaller Esa value
or to the left of this, then the asymptotic state is a
‘smoothed out’ delta function close to this Esa value.
This is also shown in figure 8. Otherwise, it converges
to the other asymptotic state.

In figure 9 we show the time dependence of the
mean phenotype for an initial condition which
depending on the size of the mutation rate converges
to one of the two asymptotic distributions. The
phenotypes present in the initial condition are all to
the left of the smaller Esa value.

(d) Phenotype dynamics for the Hawk-Dove
predator-prey system of § 3a

(1) Mixed strategies

Recall that we studied this in § 3a for the case where
each predator played a mixed strategy. We therefore
consider the phenotype dynamics for this case first
before proceeding to the case of a polymorphic
population.

It follows from the definition of the pure dynamics
and the interactions that the phenotype dynamics are
given by

x = x(1 + b)ex —ocﬂ————-elz——*
1 1 p P 1+ dpy) )

x5(p) = x2(p)e” 7 E(p,e0),
e = e(x), (26)

where E(p,q) = Z;; pig; exp(ca E;), ea(Es) is the total
predator population weighted mean of ¢, fe(p1,m2)
Eo(me)dms, and ex(&,) is the mean predator population

strategy jpzfz(pz)dpz/yéz(pz)dpz. We discretize these as
as follows, denoting x(p') by x4 and ¢ (p') by ¢!,

¥ = x(l + bexp( — a2 - 12
1= 4 P k (1 +d1x1) 4
(x8)" = xbe " E(p'.ep0),

1,1
612 = z (1%,
]

gy = zplle/z X3
7 7
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24 \" mixed EsA boundary Esa —=

population size

Figure 10. The asymptotic distributions for the phenotype
dynamics for the Hawk-Dove predator-prey system. The
value of the parameter C is 75.

Note that ¢/ = ¢, does not depend upon [ since we
assume that ¢; is the same for both Hawks and Doves.
Therefore ¢;5 is ¢; times the total predator population
size.

Recall that this system has two Esa values separated
by an evolutionary repellor at p, ~ 0.8 (with quasi-
periodic dynamics): the first at p, = Vp&,/C = 0.2 < p,
and the other a boundary Esa at p = 1. The pheno-
type dynamics reflects this. If the initial condition is
a distribution with only phenotypes p with values
greater than the evolutionary repellor p, then, under
the dynamics without mutation, it converges to a
delta function at the boundary Esa. With mutation
this asymptotic distribution is smoothed out. Other
initial conditions converge to the distribution shown
in figure 10 whose mean is at the interior Esa. This is
not close to the delta function at p. that might be
naively expected, and the addition of mutation makes
virtually no difference. The mean of this distribution
is the Esa value, p, = Vox,/C. Thus, the population
plays the same mean strategy as the pure Esa, but
there is very great phenotypic variation in the popula-
tion.

In figure 11 we show the time dependence of the
mean strategy for two initial conditions which con-
verge to each of the two asymptotic distributions.

This particular example is relatively easy to ana-
lyse. Note that the predator population mean strategy
9 1s a function of the prey population size x; and the

14
O
[
£ 0.8
2
=
[l
5 06-
=
9
<
5 0.4 -
o
g
g 0.2+
0 100 200 300 400 500

time ( in iterations x 20)

Figure 11. Time dependence of the mean strategy showing
convergence to the two Esa values.
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predator phenotype distribution x, and that x, only
enters through the frequency of each predator pheno-
type po. Thus, we write eg5 = eg9(x1,42). Let x{ and xg
denote respectively they prey population size and the
predator distribution at time ¢. If; for all py, x; and xy
are bounded away from 0 and o0 uniformly in ¢ as
t — o0, then it follows that as ¢; = 0, eg9(%1,%,) is an Ess
of the classical game where the prey population is
fixed at its long time average %,. Here %, is the long
time average of the predator distribution x,. Using this
one can show that, as ¢, — 0, (i) x{ and x5 are bounded
away from 0 and oo uniformly in ¢ if and only if
99(%1,%) 1s an Ess of the classical game and (ii) in this
case, the predator mean strategy converges to this Ess
value. Moreover, note that if the mean strategy
e99(%1,%) 1s an Ess of the classical game, then E(p,em)
does not depend upon p. Thus there is no selection on
p. This is the reason why one gets non-trivial dispersed
distributions (with mean the classical Ess) for such
examples.

(i1) Polymorphic populations

The dynamical behaviour of polymorphic popula-
tions is very different. In a polymorphic population
each individual plays one of the pure strategies and
not a mixed strategy as in the previous case. Firstly, let
us consider the pure equations for this system. The
phenotype p of the predators belongs to the discrete set
P ={H,D}. Those individuals with p = /1 play the
pure Hawk strategy and those with p = D play the
pure Dove strategy. The pure equations are given by

[ =n(l +b>exp<-a% - ~——>>

(1 +dix

=
Ry
Il

x5 = xge " “E(p,eas),
@19 = predator population mean of ¢; = ¢xy,
s = mean population strategy = p. (27)

The notion of an Esa for the pure dynamics is not so
interesting for this system because of the discreteness
of P. Trivially the only possible Esas correspond to
systems that consist only of Hawks or only of Doves
and small phenotypic mutations are not possible.
However, the phenotype dynamics which are
obtained from this system are very interesting and are
a generalization of the Jonker-Taylor-Zeeman dyna-

1000 7
100 §

104 [}

In (population size)

T T

200 300 400
time (in iterations)

0 100

Figure 12. Time dependence of the numbers of Hawk and
Dove predators and prey. Solid line, prey; dot-dashed line,
Hawks; dashed line, Doves.
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Table 6. Parameter values for the Hawk—Dove predator-prey
equation (28)

01 o d k Vo C o

>~

6.5 0.0l 0.001 0.005 2000 1 450  0.006

mics (Taylor & Jonker 1987; Zeeman 1979). The
equations for this are

X1 €12

1

x(H) |
x(H) =e (ezlzexp(szHH) + ezzzexp(ﬁzEHD)),
(D)
(D) = ¢ "(egpexp(coEpy) + e3pexp(eaEpp)),
e =e(x), (28)

where e9 = (¢33,65) is the mean predator population
strategy and e is the predator population mean
a(D)x(D) + o(H)x(H) of ¢. The latter equals
o (x(D) + x(H)) since we take ¢,(D) = ¢;(H) = ¢;. The
term 1 which is added to the right-hand side of the
first equation represents a very small import of prey
into the system. It is added to control numerical
instability associated with near-extinctions. It does
not affect our conclusions. Obviously, ey = =(H)
and ¢ = 7w(D) where #(H) = x(H) = x(H)/(x(H) +
x(D)) and 7(D) =1 — w(H). The relation with the
Jonker-Taylor-Zeeman dynamics should be clear to
the reader from this.

When the prey are not present and the value of the
resource is set at a constant V, then, as is well-known,
any initial condition (x(D), x(H)) with x(H) # 0 and
x(D) # 0 converges to x(H) = V/C if V]/C < 1 and to
x(H) = 1 if VJC > 1. The behaviour is very different
when the prey are present. For the parameter values
in table 6, we observe complex oscillatory behaviour
as shown in figure 12. For other nearby parameter
values complex oscillatory patterns are observed.

(e) Phenotype dynamics for the predator-prey
system with strategic prey

We now consider another type of interesting pheno-
typic dynamics and introduce a new system. This is
again a predator—-prey system, but now we assume
that the prey are strategic. Their strategy is repre-
sented by a number p in the unit interval P = [0,1]
which represents the weight given to searching for
food. Those with p = 0 put a large effort into actively
searching for food with a consequently higher risk of
predation. Those with p = 1 do not actively search for
food and are therefore immune to predation but likely

Table 7. Parameter values for the stralegic prey equation
(29)

r 1 2 dy k m

1.8 0.01 0.001 0.1 130 0.001
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0
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~0.016 . , : : 1
0 02 0.4 0.6 08 1
p

Figure 13. The graph of f, for the risk trade-off model (29)
for parameter values given in table 7.

to go hungry. Intermediate strategies are represented
by intermediate values of p. For the pure equations
and interactions we take the following:

x=x(1+71)

1
xexp(— f’;c—l _(1—p>——”—1xi——>+x—;, (29)

(1 + mefy) 11
x5 = x2(1 — dy)exp(es) + 1,

where e;; = (¢1,68,) is the pair consisting of the prey
population weighted mean strategy and the total prey
numbers and ¢ is the prey population weighted mean
of ¢;. For the pure case, ¢f; = px; and e = x;. As in
the previous example, the terms x/e% and 1 are
introduced to control numerical instabilities that arise
because of near extinctions in the dynamics. The first
term is chosen so that it goes to zero with x; to allow
competition with successfully invading mutants to
wipe the original population out. Normally, we would
introduce a further interaction term corresponding to
the total number of predators. However, as we are not
going to consider mutations of the predator, this is not
necessary.

In figure 13 we plot the graph of f, for this
equation when the parameter values are as in table 7.
We observe that there are two Esa values separated by
an evolutionary repellor. There is a boundary Esa at
p = p, =0 and evolutionary repellor at p, & 0.07 and
an Esa at px ~ 0.23. In the phenotype dynamics these
Esas compete with the result that the mean strategy p
oscillates in an irregular fashion between p =0 and
p = 1. When the system is near the state where p is
close to 0 or 1, then the population’s phenotypic
distribution is bunched up close to this end-point. As
the system moves to the opposite extreme all the
individuals move to the other end of phenotype space.
For this reason, and because the strategy is akin to
confidence, we regard this as a biological business
cycle.

6. LEARNING DYNAMICS

In this section we are interested in the following
learning problem. We consider a general dynamical
system of the form

é/ = E(€5x>c)>

X = MEx0).
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Figure 14. Time dependence of the mean prey strategy
caused by the oscillating evolution between the two almost-
boundary strategies.

Here ¢ is some dynamically varying background
environmental variable and x describes a distribution
of strategies or behaviour amongst a population of
agents. The wvariable ¢ represents external control
variables. Unlike our previous systems, the strategy
dynamics are not given by reproduction but rather by
learning. This is represented by the function A which
gives the learning rule. These can represent a sort of
phenotype dynamics because x can contain distribu-
tions of strategies.

The function A will be our phenotype and we will
allow mutations in this learning rule.

As an example we will consider the following simple
learning system. We assume a discrete set of strategies
$§={l,. .., m} and assume a population II consisting
of individuals 7. The state of the system is given by the
configuration ¢ = (0,,) where o0,, is the probability
that e IT plays strategy .

We denote by P;(g) the payoff to strategy ¢ if the
population is playing the configuration ¢ = (g;,).
Then we define ¢’ = A(g) by

1

i =Ti+ 7 (01, = 1)" exp(Pi( @) — P(3))), (30)

where P(o) is the population’s mean payoff and Z is
chosen so that X, g7, = 1. Note that this generates the
sequence

o, ,(t+1) = % (r; + exp(mPy(t) + m*P(t —1) + ...)),
where P(t) = P,(t) — P(t) is the excess payoff at the ¢th
time step. This is analogous to the Harley learning
rule (Harley 1981). The parameter m is a discount
factor. It is also important to note that the initial
condition ¢;, must satisfy o,, > 7. Otherwise the
probabilities will become negative.

To make things simple let us further suppose that

the payoffs are given in the usual linear way by a

payoff matrix £ = (£;). Then the payoff is given by

Po) = Y4B,
J

where ¢; = X.0;,./%Z,.0,, is the population’s mean
strategy.

The simplest case to consider is where IT = {1}. One
can regard this as the situation where everyone is
forced to play the same strategy. Then the state of the
system is given by g = (0;,). It follows that ¢; = ;.

We use the payoff matrix of our previous Hawk-
Dove predator—prey system discussed in § 5d. Instead
of being prey we regard the agents corresponding to
the population & = x; as consumers and the agents
corresponding to the predators as agents who either
adopt a high-risk aggressive selling strategy (Hawks)
or else are risk-averting (Doves). The strategic learn-
ing process A is as described above.

Thus, if we let & denote the number of consumers,
x(D) and x(H) denote the numbers of Hawk and
Dove agents, 7=x(H)+ x(D), h=x(H)/t, d=
x(D)[t and ¢ = x(H)/t, then our pure dynamics are
given explicitely by

&(1 +b)exp(— % _ c‘%d@)’

1
W =1+ (h— )" exp(E(H, p) — E(p,p)),

é/

1
@ =1+ 7 (d = )" exp(E(D.p) ~ E(p.p)),

v = exp(eE(p, ). ’ (31)

The parameters are given in table 8. For these
parameter values, the attractor of this system is a fixed
point.

Now recall that we think of X as the phenotype p
and consider evolutionary stability to mutated learn-

0—\

-2.0

109 £, (1)

-4.0

0 0.2 0.4 0.6 0.8 1
"o
Figure 15. The graph of f, for the learning system given by

cquation (31) when p=rp, for the parameter values given in
table 8. The parameter 7y is set to 0.

Table 8. Parameter values for the learning system given by equation (31)

b o 2 d k

V() C g C3 m '

0.5 0.01 0.001

0.001 1000

1 180 0.02 0.05 0.8

Phil. Trans. R. Soc. Lond. B (1994)
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asymptotic distribution 2\

Y asymptotic distribution 1
£ 2
E 4
§ initial distribution 1
i N " initial distribution 2
R N Lo S
0 02 04 0.6 0.8 1

4t
Figure 16. The asymptotic phenotype distributions for p=ry
for the learning system given by equation (31). The

parameter 7 is set to 0. With the distributions we show two
initial conditions that converge to them.

ing processes. Here we only consider evolution within
the class of learning processes A of the form described
above. These are parameterised by the discount factor
m and the residual biases or preferences r; and ;. The
evolution of m is simple. Under evolution, the value of
m increases. Here we fix its value at 0.8.

Thus we consider p = (ry4rp), for simplicity we
consider these separately. Recall that we must have
7; < 1 since, as was pointed out above the initial
condition ¢,, must be greater than 7, For the Hawk’s
residual preference 7, there are two boundary Esas at
ry=0 and ry=1 separated by an evolutionary
repeller. The value 75 = 1 is not a boundary Esa value
in the usual sense. This is because in practise it cannot
be realised because of the constraint oy, > 75 How-
ever, the system will evolve to values arbitrarily close
to 7;; = | if the initial strategy has a greater value than
the evolutionary repeller.

For the Dove’s residual preference 7, there is an
interesting ESA at 7, = 75, & 0.34. The graph of f for
7p is shown in figure 15. Thus we see that the learning
evolves to give us a specific learning structure with a
specific residual preference. We observed that the Esa
value and the evolutionary repeller are given by a
condition analogous to that for the classical linear

1.6
o 12
N
f=]
2
=08
o
o
o

0.4

0 0.2 0.4 0.6 0.8 1

p

Figure 17. The asymptotic phenotype distribution for p=rp
for the learning system given by equation (31). The
parameter 7y is set to 0.
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Hawk-Dove game. They are precisely the values for
which the proportion of time playing Hawk equals
V/C where ¥ is the mean resource value Voé.

We then consider the phenotype dynamics for this
system where we separately take the phenotype p to be
one of 7, and 7. We take the usual mutation process
given by equation (24) in our phenotype dynamics.
For p = ry initial distributions converge under the
phenotype dynamics to one of two distributions
depending upon initial conditions. These are shown
in figure 16. They show great phenotypic variation.
However, we believe that this is due to the fact that
the selective pressures are small and therefore the
effect of the mutation process is amplified. Without
mutations, the system will converge to a delta function
at one of the Esas. For p = r, they converge to the
interesting distribution shown in figure 17. This gives
a wide distribution of phenotypes with mean value at
the Esa value r;. Thus we conclude that in such a
population with phenotypic variation, the learning
rule will evolve (under nonreproductive learning
evolution) to one with the 74 having a very low or
high value and the 7, having great phenotypic
diversity around the mean given by the Esa value.
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Okologic of the Forschungszentrum Jiilich and the writing
was completed during a visit to the Institute for Theoretical
Physics (University of California, Santa Barbara) partially
funded by the NSF grant PHY89-04035. We are grateful to
these institutions for their hospitality. We thank the Wolfson
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APPENDIX 1. CONTINUOUS TIME AND ODES

In this appendix we very briefly discuss the modifica-
tions that are necessary when one is dealing with
systems that are described by ordinary differential
equations.

(1) Mathematical formalism
The general abstract form of the equations defining
the pure dynamics analogous to equation (5) is then

dxz/dt = ‘Xvi(x)eiap) (l = 1> RIS S))
¢ = €(x0,3 ;). (32)

The interaction parameters ¢ = (¢;) are defined as
before. Thus each ¢; associates to any phenotypic
distribution &; a number or vector ¢;(&; p,).

Then the p’-mutated system is given by

dx;/dt = X(x,e; p) (i=1,...,59),
dy/dt = X{(y.ef,p") (e M),
e; = (€5(% 6y + 40,50 -1, s
¢ = (e5(x;0, + %5;;;;?{))]:1,.‘.,“ (33)

where M is the set of ¢ such that p; # p;. As before, we
express the equation like this because we do not want
to consider mutants which are the same as the original
species.

To illustrate this consider our above resource—
predator-prey system given by equation (3). An
analogous continuous time system would be given by

1 dx; e 2

———=bh -0 - ——

% dt €13 1+ dieyy

1 daxy

x_Z_d.t— = —dy + €91,

1 dxg €33

o T g e (34)
¢; = population size of species group j (¢ = 11, 13 and
33),

¢; = species j population weighted mean of ¢; (i = 12,

21 and 31).
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(i) Evolutionary stability
The definition of evolutionary stability of an attrac-
tor is the same as in the discrete time case.

(iii) Invasion exponent
The variational mapping V is replaced by the
following variational equation:

dx;/dt = X;(x,e;, p) (i=1,...59),
dy;/dt = dX{(0,¢, ") * y;
e = (;(x0y5 1) )j=1,. s>
¢ = (e5(x030{))j=1,...s- (35)

Let V! denote the flow associated to this. That is, if the
initial condition is (x,y), then the state at time ¢ is
V'(x,y). We define the linear mapping T to be that
such that 7! -y is the y-component of V'(xy). To
define the invasion exponent, we replace our discrete
time definition of y by

1
2(x) = 2(x,p') = lim inf - log|(T"], (36)

and proceed as in the discrete time case.

As for discrete-time systems, we assume that, if
y; = 0 then dy;/d¢ = 0. Then with this hypothesis and
notation the results of §4 carry over to continuous
time systems after obvious modifications.

(iv) Lotka—Volterra systems
In our formalism the pure equation for Lotka-
Volterra systems is given by

1 dx, !
e S oaje; (i=1,...4d). (37)

x dl o
where ¢;(&) is of the form [a(p)&(p)dp, where
a(p;) is any smooth function of p;. Thus ¢; could be
total population size or biomass of the jth species
group.

Obvious analogous results corresponding to each of
those for the discrete case are true.

(v) Phenotype dynamics
The (mutation-free) phenotype dynamics are then
given by

dx;( p,)
d¢

= Xi(x(p)sep)s

& = e(x;p1), (38)
where x(ﬁ) = (xl(pl)a R x&‘(ﬁ:))ap = (pla . -aps) and

e(x) is the value of the interactions corresponding to
the distribution given by x.

APPENDIX 2. LEMMA 1, AGE-STRUCTURED
POPULATIONS AND THE NON-GENERICITY
OF STRONG STABILITY FOR CHAOTIC
ATTRACTORS

(1) Lemma 1
We firstly prove lemma 1. Let x; = (x;;) where x;;
denotes the number of individuals of age j where
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0 <j < /- 1. Then we assume that the age groups are
linked by equations of the form

X1 = % 0%, y) for j=1...01-1,

t—1

Xio = z xz',j%(xay)a

j=1

where ¢; and Y, are positive. In this case the pure
equations are given by

x = Ax) > ¥,

where A;(x) is a matrix of the form

ap ay e PN aj_1

by O 0 . 0
Ai(x)=Axp)=l 0 & 0 ... 0

0 0 ... by O

The entries in the matrix are functions of x. Let
A;(x) denote the matrix of 0’s and 1’s obtained by
replacing all non-zero entries of 4;(x) by 1. Then we
say that the age-structure if primitive if 4; = 4,(x) is
independent of ¥ and there exists » = 0 such that the
nth power of A; has all its entries non-zero. In
particular, this is the case if all the a; and &, are
non-zero. We henceforth assume that the age-struc-
ture is primitive.

Suppose that x lies in the attractor A and that A is
bounded away from 0 and infinity in the sense that
there is £ > 0 such that for all xeA, k=" < x;; < £.

If x" = (x7;) is the value of x; after n iterates then
x' = A (x) * x; where

A (x) = A(f" ) L. Aylx).

Since all the coordinates of x; are positive, it follows
from the bundle version of the Perron-Frobenius
theorem that ||x/|| and ||4/(x)|| have the same growth
rate. Since x” is in A and therefore bounded away
from 0 and oo,

1
lim —log||4"(x)|| = 0.
n—oo N

Now consider p’ near p. Then T,,— Ai(xp) as
p —p. Thus

. A
1(x.9) = lim 1,(x,") = lim ~ loglld(x,p)I.
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This proves lemma 1.

(1) Non-genericity for chaotic attractors

We now consider the non-genericity of strong
evolutionary stability for chaotic attractors. We
assume that each y; is 1-dimensional. If Y(x) is a
function of x, then we denote by ¥ the averaged
function

n—1

— 1 .
=1 — 7
Y (x) = lim sup nj;o Y (x)).
We will show that evolutionary stability implies that

4,0, (x,p) =0, (39)

for all periodic points x of the pure dynamics f. This is
an infinite number of conditions which will only hold
in very exceptional circumstances.

By (16) and lemma 1,

0.(x,0") = 4,0, (x,p) - (p' — p) + O(p" — pI?).

Ifa'?@ (%0, p) # 0 for some periodic point x,, then there
are p’ arbitrarily close to p such that 4,0, (x,p) *
(p" — p) > 0. We now indicate why this implies that A
is not evolutionarily stable.

In this case the periodic point zy = (x,0) of the
p’-mutated dynamics g has an unstable manifold
W (z) which contains points (x,y) with y > 0.

It follows that Ay = {(x,0) :x€ A} is not an attractor
of g at least in the strong sense that there is a
neighbourhood U of A, such that g(U) < U and

Ao= () &"(U), (40)

n=0

for the reason given in the next paragraph. Thus A is
not evolutionarily stable in the strong sense.

Suppose that there is a U such that g(U) = U and
Apc U. Then W(z) is contained in U for the
tollowing reason. If (x,y) € W/(z,) then g ~'(x,y) € U for
large i. But g(U) = U. Thus (xy) = g'(g ~(x,y)) € U.

As Wg(z) is contained in U and g(Wg(z)) =
W{(zo)s Wizo) = (Vaz0g"(U).

Thus V.o ¢"(U) contains points of the form (x,y)
with ¥ > 0 and therefore is not equal to A, Conse-

quently, Ao is not an attractor of the form (40).

Note added in proof (21 January 1994): The following recent paper discusses a number of issues which,
although they are in a different context, are closely related to our theorem 1. Of particular interest is the
main theorem of this paper which effectively implies our theorem 1.
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